Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Commun ; 13(1): 5760, 2022 09 30.
Article in English | MEDLINE | ID: covidwho-2050381

ABSTRACT

SARS coronavirus 2 (SARS-CoV-2) continues to evolve and new variants emerge. Using nationwide Danish data, we estimate the transmission dynamics of SARS-CoV-2 Omicron subvariants BA.1 and BA.2 within households. Among 22,678 primary cases, we identified 17,319 secondary infections among 50,588 household contacts during a 1-7 day follow-up. The secondary attack rate (SAR) was 29% and 39% in households infected with Omicron BA.1 and BA.2, respectively. BA.2 was associated with increased susceptibility of infection for unvaccinated household contacts (Odds Ratio (OR) 1.99; 95%-CI 1.72-2.31), fully vaccinated contacts (OR 2.26; 95%-CI 1.95-2.62) and booster-vaccinated contacts (OR 2.65; 95%-CI 2.29-3.08), compared to BA.1. We also found increased infectiousness from unvaccinated primary cases infected with BA.2 compared to BA.1 (OR 2.47; 95%-CI 2.15-2.84), but not for fully vaccinated (OR 0.66; 95%-CI 0.57-0.78) or booster-vaccinated primary cases (OR 0.69; 95%-CI 0.59-0.82). Omicron BA.2 is inherently more transmissible than BA.1. Its immune-evasive properties also reduce the protective effect of vaccination against infection, but do not increase infectiousness of breakthrough infections from vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Denmark/epidemiology , Family Characteristics , Humans , SARS-CoV-2/genetics
2.
Nat Commun ; 13(1): 5573, 2022 09 23.
Article in English | MEDLINE | ID: covidwho-2042321

ABSTRACT

In late 2021, the Omicron SARS-CoV-2 variant overtook the previously dominant Delta variant, but the extent to which this transition was driven by immune evasion or a change in the inherent transmissibility is currently unclear. We estimate SARS-CoV-2 transmission within Danish households during December 2021. Among 26,675 households (8,568 with the Omicron VOC), we identified 14,140 secondary infections within a 1-7-day follow-up period. The secondary attack rate was 29% and 21% in households infected with Omicron and Delta, respectively. For Omicron, the odds of infection were 1.10 (95%-CI: 1.00-1.21) times higher for unvaccinated, 2.38 (95%-CI: 2.23-2.54) times higher for fully vaccinated and 3.20 (95%-CI: 2.67-3.83) times higher for booster-vaccinated contacts compared to Delta. We conclude that the transition from Delta to Omicron VOC was primarily driven by immune evasiveness and to a lesser extent an inherent increase in the basic transmissibility of the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Denmark/epidemiology , Family Characteristics , Humans
3.
PLoS Med ; 19(9): e1003992, 2022 09.
Article in English | MEDLINE | ID: covidwho-2009677

ABSTRACT

BACKGROUND: The continued occurrence of more contagious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants and waning immunity over time require ongoing reevaluation of the vaccine effectiveness (VE). This study aimed to estimate the effectiveness in 2 age groups (12 to 59 and 60 years or above) of 2 or 3 vaccine doses (BNT162b2 mRNA or mRNA-1273) by time since vaccination against SARS-CoV-2 infection and Coronavirus Disease 2019 (COVID-19) hospitalization in an Alpha-, Delta-, or Omicron-dominated period. METHODS AND FINDINGS: A Danish nationwide cohort study design was used to estimate VE against SARS-CoV-2 infection and COVID-19 hospitalization with the Alpha, Delta, or Omicron variant. Information was obtained from nationwide registries and linked using a unique personal identification number. The study included all previously uninfected residents in Denmark aged 12 years or above (18 years or above for the analysis of 3 doses) in the Alpha (February 20 to June 15, 2021), Delta (July 4 to November 20, 2021), and Omicron (December 21, 2021 to January 31, 2022) dominated periods. VE estimates including 95% confidence intervals (CIs) were calculated (1-hazard ratio∙100) using Cox proportional hazard regression models with underlying calendar time and adjustments for age, sex, comorbidity, and geographical region. Vaccination status was included as a time-varying exposure. In the oldest age group, VE against infection after 2 doses was 90.7% (95% CI: 88.2; 92.7) for the Alpha variant, 82.3% (95% CI: 75.5; 87.2) for the Delta variant, and 39.9% (95% CI: 26.3; 50.9) for the Omicron variant 14 to 30 days since vaccination. The VE waned over time and was 73.2% (Alpha, 95% CI: 57.1; 83.3), 50.0% (Delta, 95% CI: 46.7; 53.0), and 4.4% (Omicron, 95% CI: -0.1; 8.7) >120 days since vaccination. Higher estimates were observed after the third dose with VE estimates against infection of 86.1% (Delta, 95% CI: 83.3; 88.4) and 57.7% (Omicron, 95% CI: 55.9; 59.5) 14 to 30 days since vaccination. Among both age groups, VE against COVID-19 hospitalization 14 to 30 days since vaccination with 2 or 3 doses was 98.1% or above for the Alpha and Delta variants. Among both age groups, VE against COVID-19 hospitalization 14 to 30 days since vaccination with 2 or 3 doses was 95.5% or above for the Omicron variant. The main limitation of this study is the nonrandomized study design including potential differences between the unvaccinated (reference group) and vaccinated individuals. CONCLUSIONS: Two vaccine doses provided high protection against SARS-CoV-2 infection and COVID-19 hospitalization with the Alpha and Delta variants with protection, notably against infection, waning over time. Two vaccine doses provided only limited and short-lived protection against SARS-CoV-2 infection with Omicron. However, the protection against COVID-19 hospitalization following Omicron SARS-CoV-2 infection was higher. The third vaccine dose substantially increased the level and duration of protection against infection with the Omicron variant and provided a high level of sustained protection against COVID-19 hospitalization among the +60-year-olds.


Subject(s)
COVID-19 , Viral Vaccines , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , Denmark/epidemiology , Hospitalization , Humans , SARS-CoV-2/genetics , Vaccine Efficacy
4.
Nat Commun ; 13(1): 3764, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1908181

ABSTRACT

Effective vaccines protect individuals by not only reducing the susceptibility to infection, but also reducing the infectiousness of breakthrough infections in vaccinated cases. To disentangle the vaccine effectiveness against susceptibility to infection (VES) and vaccine effectiveness against infectiousness (VEI), we took advantage of Danish national data comprising 24,693 households with a primary case of SARS-CoV-2 infection (Delta Variant of Concern, 2021) including 53,584 household contacts. In this setting, we estimated VES as 61% (95%-CI: 59-63), when the primary case was unvaccinated, and VEI as 31% (95%-CI: 26-36), when the household contact was unvaccinated. Furthermore, unvaccinated secondary cases with an infection exhibited a three-fold higher viral load compared to fully vaccinated secondary cases with a breakthrough infection. Our results demonstrate that vaccinations reduce susceptibility to infection as well as infectiousness, which should be considered by policy makers when seeking to understand the public health impact of vaccination against transmission of SARS-CoV-2.


Subject(s)
COVID-19 , Vaccines , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccination
5.
Euro Surveill ; 27(10)2022 03.
Article in English | MEDLINE | ID: covidwho-1742167

ABSTRACT

Following emergence of the SARS-CoV-2 variant Omicron in November 2021, the dominant BA.1 sub-lineage was replaced by the BA.2 sub-lineage in Denmark. We analysed the first 2,623 BA.2 cases from 29 November 2021 to 2 January 2022. No epidemiological or clinical differences were found between individuals infected with BA.1 versus BA.2. Phylogenetic analyses showed a geographic east-to-west transmission of BA.2 from the Capital Region with clusters expanding after the Christmas holidays. Mutational analysis shows distinct differences between BA.1 and BA.2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Denmark/epidemiology , Humans , Molecular Epidemiology , Phylogeny , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL